If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2-2=0
a = 5; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·5·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*5}=\frac{0-2\sqrt{10}}{10} =-\frac{2\sqrt{10}}{10} =-\frac{\sqrt{10}}{5} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*5}=\frac{0+2\sqrt{10}}{10} =\frac{2\sqrt{10}}{10} =\frac{\sqrt{10}}{5} $
| -7x-4(3x-7)=-162 | | 10x-1/4=9x+3/4 | | x-16+x+9=23x | | 3x+x-30=0 | | 1111111=x1111111 | | 2x^2-2x+25=4x^2-20x+25 | | x-16+x+9=2x-25 | | 3/4(x+14)=2/3(20-x) | | 1+1x+2x=228 | | 6x^2+21x+90=0 | | 0,25x^2-5x+25-2x=0 | | 5(4z+3)=11 | | -6x+2x+9+2=2x+x+2 | | 6x^2+21x-6=0 | | 2x2−2x+25=4x2−20x+25 | | 4a+6=16 | | 3(w+7)-8w=-19 | | (2x+3)(3x+6)=0 | | y-3.19=9.46 | | 250=500-50r | | 400=500-50r | | y=-93(93)= | | | | 3/4x+3=2/5 | | 8x^2-((+6x^2-4x-21x+14)-214+9-6x-12x=0 | | 16t^2-24t+325=0 | | ((x^2)-10)+((x^2)-98)=180 | | (2x+1)2=4(x2-1)+x-1 | | 6+3n=4-n | | 8(u-1)-4=4(2u-1)+9 | | 4x+2^{1+2x}=50 | | (2x-3)(4x-3)-((2x-7)(3x-2)=214 |